The alchemical harmonic approximation (AHA) provides a systematic and accurate model to predict the electronic energies of iso-electronic diatomic molecules across a wide range of interatomic distances and nuclear charges.
밀도 범함수 근사법(DFA)은 s- 및 d-전자에 대한 균형 잡힌 설명을 제공해야 하며, 이는 s- 및 d-전자 제2 이온화 에너지 오류 차이로 측정할 수 있다. LSDA에서 PBE, r2SCAN으로 갈수록 sd 전이 오류가 감소하지만, Perdew-Zunger 자기 상호작용 보정을 적용하면 3d 전자가 심각하게 언더바인딩되어 큰 sd 전이 오류가 발생한다.
Density functional approximations (DFAs) and self-interaction corrected DFAs exhibit varying performance in describing the ionization energies of 3d transition metal atoms, with the self-interaction correction introducing an "energy penalty" for the noded 3d orbitals.
그룹 11 원소(Cu, Ag, Au)의 정적 쌍극자 분극률을 단일, 이중 및 섭동 삼중 여기를 포함하는 상대론적 결합 클러스터 방법을 사용하여 계산하였다. 스칼라 상대론, 스핀-궤도 결합 및 완전 상대론적 Dirac-Coulomb 기여 등 세 가지 유형의 상대론적 효과가 조사되었다.
群11族元素(Cu、Ag、Au)の静的双極子分極率を相対論的結合クラスター法を用いて計算し、スカラー相対論効果、スピン軌道相互作用、完全相対論的Dirac-Coulomb効果の3種類の相対論的効果を調査した。最終的な推奨値と不確定性は、Cu: 46.91 ± 1.30、Ag: 50.97 ± 1.88、Au: 36.68 ± 0.62 a.u.である。
Highly accurate static dipole polarizabilities for Cu, Ag, and Au are computed using relativistic coupled-cluster methods, with a detailed analysis of the impact of relativistic effects and electron correlation.
A novel semiclassical phase-space surface hopping approach can accurately capture electronic inertial effects during molecular translations, rotations, and vibrations, overcoming the limitations of the traditional Born-Oppenheimer approximation.
Molecules approaching a reactive Ni(111) surface in a cartwheel orientation have a higher probability to scatter, whereas those in a helicopter orientation are more likely to dissociate and stick to the surface.
The major product of the reaction between CO and OH on ice surfaces is the highly reactive HOCO radical, rather than CO2, suggesting the need to reevaluate interstellar CO2 formation pathways in astrochemical models.
The authors have developed a new local hybrid functional, CHYF, that is designed from first principles to be general and transferable across a wide range of applications in quantum physics, chemistry, and materials science. The functional shows excellent performance for a variety of properties, including thermochemistry, excitation energies, magnetic properties, and NMR parameters, while being numerically robust and requiring only small computational grids.