본 논문은 동적 그래프에서 최대 매칭의 (1-ε) 근사치를 효율적으로 유지하는 새로운 알고리즘을 제안한다. 이 알고리즘의 업데이트 시간은 특정 그래프 클래스인 순서화된 Ruzsa-Szemerédi (ORS) 그래프의 밀도에 따라 달라진다.
본 논문은 정점 삽입 및 삭제가 가능한 동적 그래프에서 모든 쌍 최단 경로를 효율적으로 유지하는 몬테카를로 알고리즘을 제안한다. 이 알고리즘은 최악의 경우 e O(n2.5) 시간 복잡도를 달성하며, 공간 복잡도는 e O(n2)로 유지한다.
본 논문은 동적 그래프에서 정확한 간선 연결성을 선형 시간 내에 유지하는 새로운 알고리즘을 제안한다.
주어진 가중치 무향 그래프 G = (V, E)에서 간선 삽입 및 삭제가 발생할 때, 임의의 정점 쌍 (u, v)에 대해 2^poly(1/ε)-근사 거리를 poly(1/ε) log log n 쿼리 시간 내에 결정론적으로 유지할 수 있는 데이터 구조를 제시한다.