본 논문은 방사 전달 방정식의 차원 문제를 해결하기 위한 저순위 텐서 곱 프레임워크를 제안한다.
방사 전달 방정식의 약한 형식화와 갈렌킨 근사를 통해 선형 방정식 Eu = b를 얻는다. 이 때 E는 크로네커 곱의 합으로 표현된다.
효율적인 해법을 위해 E에 대한 전처리 연산자 P를 구성한다. P는 지수함수 합 근사를 이용하여 구성되며, P^(-1/2)도 크로네커 곱의 합으로 표현된다.
전처리된 선형 방정식 Aw = f를 리차드슨 반복법으로 해결한다. 여기서 w = P^(1/2)u이다.
반복 과정에서 순위 제어 기법을 적용하여 근사해의 순위를 제한한다. 이를 통해 메모리 요구량을 크게 줄일 수 있다.
제안된 방법의 수렴성과 근사 오차 분석을 수행한다. 또한 적응형 순위 제어 알고리즘을 제시한다.
수치 실험을 통해 제안 방법의 효과를 확인한다. 기존 방법에 비해 근사 오차는 유사하면서도 순위는 크게 낮아짐을 보인다.
A otro idioma
del contenido fuente
arxiv.org
Ideas clave extraídas de
by Markus Bachm... a las arxiv.org 03-22-2024
https://arxiv.org/pdf/2403.14229.pdfConsultas más profundas