The article focuses on developing efficient preprocessing algorithms to accelerate the solution of large-scale linear equation systems. It introduces three inner iteration methods - RPCG, ADI, and Kaczmarz - that can be used to generate preprocessing matrices for the BA-GMRES outer iteration.
The RPCG-BA-GMRES method uses the Restricted Preconditioned Conjugate Gradient (RPCG) method as the inner iteration to generate a preconditioning matrix. The convergence analysis shows that this approach can effectively reduce the condition number of the original problem.
The ADI-BA-GMRES method uses the Alternating Direction Implicit (ADI) iteration as the inner iteration. The convergence of the ADI method is analyzed, proving that it converges unconditionally.
The Kaczmarz-BA-GMRES method uses the Kaczmarz method and its variants, including random Kaczmarz with constant and adaptive step sizes, as the inner iterations. Convergence rates are derived for these Kaczmarz-based methods.
The article also provides numerical examples demonstrating the effectiveness of these preprocessing approaches in improving the solution rate compared to solving the original linear system directly.
A otro idioma
del contenido fuente
arxiv.org
Ideas clave extraídas de
by Juan Zhang,Y... a las arxiv.org 04-10-2024
https://arxiv.org/pdf/2404.06018.pdfConsultas más profundas