Keskeiset käsitteet
Generalizing proof simulation procedures for Frege systems to Lukasiewicz logics.
Tiivistelmä
The content discusses the generalization of proof simulation procedures from Frege systems to Lukasiewicz logics, focusing on finite-valued Lukasiewicz logics. It presents new proof systems L3n∨ and L3∨, upper bounds on speed-ups, and comparisons with natural deduction and hypersequent calculus.
- Introduction
- Proof simulation in complexity theory.
- Cook and Reckhow's results on classical logic.
- Degrees of Polynomials
- Comparing efficiency of different calculi.
- Discrepancy between size and steps in proofs.
- Finite-Valued Lukasiewicz Logics
- Lack of deduction theorem in L3.
- Construction of ND-like calculus for L3.
- Simulation Procedures
- Bonet and Buss's simulation procedures for Frege systems.
- Generalization Results
- Upper bounds on speed-ups for natural deduction over Frege systems.
Tilastot
一定のcがあると仮定すると、BがnステップでFregeシステムから導かれる場合、A ⊃ Bにはc·nステップでFrege証明が存在します。
BがA1、...、AmからnステップでFregeシステムで導かれた場合、A1 ⊃(...)⊃(Am ⊃ B)にはO(m + n)ステップのFrege証明が存在します。