이 논문은 경계된 매칭 수를 갖는 그래프에서 특정 부분 그래프의 최대 개수를 연구하는 극단 그래프 이론의 문제인 일반화된 투란 문제에 대한 안정성 결과 및 정확한 값을 제시합니다.
조합적 객체의 극한을 연구하기 위한 새로운 조합적 프레임워크를 소개하고, 이를 사용하여 다양한 그래프 매개변수와 설정에서 Erdős-Stone-Simonovits 유형 정리를 일반화하여 점근적 결과뿐만 아니라 안정성, 과포화, 경우에 따라 정확한 결과까지 얻을 수 있음을 보여줍니다.
이 논문에서는 클릭 수와 원주가 제한된 그래프에서 가능한 최대 에지 수를 연구하여 특정 조건 하에서 정확한 Turán 수를 결정하고 Katona와 Xiao의 추측을 더 강력한 형태로 확인합니다.
유한한 수의 최소 $r$-그래프 패턴 집합이 주어졌을 때, 금지된 $r$-그래프의 유한한 군 $F$가 존재하여 $F$에 대한 극단적 Turán 구성이 주어진 패턴을 blowup 및 재귀를 통해 어떤 방식으로든 혼합하여 얻을 수 있는 최대 $r$-그래프와 정확히 일치합니다.