본 연구는 다양한 하이젠베르크 스핀 체인 모델을 기반으로 한 양자 배터리의 성능을 분석하고, 특히 국소적이고 불균일한 자기장, Dzyaloshinsky-Moriya (DM) 및 Kaplan-Shekhtman-Entin-Wohlman-Aharony (KSEA) 상호 작용이 에르고트로피 및 용량에 미치는 영향을 심층적으로 조사하여 최적의 양자 배터리 설계를 위한 조건을 제시합니다.
This research paper investigates how to maximize the performance of quantum batteries built using Heisenberg spin chains, focusing on the impact of different spin couplings, magnetic field configurations, and temperature on energy storage and extraction.
By continuously monitoring the environment of an open quantum battery and using the measurement data to optimize work extraction, it is possible to achieve a significant enhancement in extracted work compared to traditional methods.
Collective effects in waveguide-QED systems, particularly in disordered atomic arrangements, can significantly enhance the energy storage time of quantum batteries.