本論文では、回復可能な頑健最短経路問題を調査している。離散予算区間不確実性表現を使用して、不確実な第二段階弧コストをモデル化している。 既知の複雑性結果を強化している。弧除外および弧対称差近傍について、問題がΣp3-困難であることを示している。さらに、これらの近傍に対する内部の敵対的問題がΠp2-困難であることも証明している。
Egy másik nyelvre
a forrásanyagból
arxiv.org
Főbb Kivonatok
by Marc... : arxiv.org 04-01-2024
Mélyebb kérdések
Tartalomjegyzék
回復可能な頑健最短経路問題の計算複雑性
Computational Complexity of the Recoverable Robust Shortest Path Problem with Discrete Recourse
第二段階の回復アクションの柔軟性を高めることで、問題の複雑性がどのように変化するか。
第一段階と第二段階の目的関数の重み付けを変更した場合、問題の複雑性にどのような影響があるか。
本問題の解法アプローチを、他の頑健最適化問題にも適用できるか検討する価値はあるだろうか。
Eszközök és források
Pontos összefoglaló és kulcsfontosságú információk beszerzése az AI PDF Összefoglalóval