急冷されたボース気体の空間的位相相関の進化を物質波干渉計を用いて測定し、相粗大化と量子渦形成の関係を明らかにした。
The author presents an analytical solution of the Schrödinger equation and the corresponding wave function for the neutral helium atom in the ground state, taking into account the entangled state of the two electrons and the effects of vacuum polarization.
There is a decisive difference between quantum entanglement and classical non-separability: quantum entanglement involves correlating statistical outcomes of multiple measurements, while classical non-separability typically refers to deterministic correlations between a single measurement and a filter or sorter operation.
Relativistic entanglement can be described by postulating correlations between the invariant intervals of interacting quantum systems, leading to insights into the muon decay process and the survival of entanglement in the presence of horizons.
Error and disturbance in quantum measurements can be formulated as special cases of the irreversibility in quantum processes, enabling the application of knowledge from stochastic thermodynamics and quantum information theory.
Blended and random measurements provide insights into quantum systems with the Gentle Random Measurement Lemma.
Unvereinbarkeiten zwischen dem Unabhängigkeitspostulat, der Vielwelten-Theorie und der Konstruktionstheorie werden aufgezeigt.
Neue notwendige Bedingungen für die Sättigung des QCRB in der Einzelkopie-Multiparameter-Schätzung werden etabliert.
Thermal states of local Hamiltonians are separable above a certain temperature, challenging conventional entanglement beliefs.
Utilizing Quantum Langevin Dynamics for optimization problems, proving convergence in convex landscapes.