하이퍼큐브를 더 작은 하이퍼큐브로 분할하는 방법의 수는 하이퍼큐브의 완벽 일치의 수보다 기하급수적으로 많으며, 이는 2차원 하이퍼큐브(정사각형)를 포함할 때 더욱 두드러집니다.
d次元超立方体の頂点集合を、頂点を共有しないより小さな超立方体の頂点集合に分割する方法の数は、超立方体の完全マッチングの数よりも指数関数的に大きく、その増加率は最大でも指数関数的である。
The number of ways to partition a hypercube into smaller hypercubes significantly exceeds the number of perfect matchings in the hypercube, demonstrating the vast combinatorial possibilities of this problem.
The number of ways to partition a high-dimensional hypercube into subcubes of a fixed, large dimension is asymptotically determined by a specific formula, indicating that almost all such partitions are generated by a recursive "fractal" structure.