Core Concepts
Ka,b-free Max k-Weight SATに対する(1 - ǫ)-近似カーネルを提供しました。
Abstract
Max k-Weight SAT問題における重要な進展。Greedy戦略とsunflower lemmaスタイルの削減規則を組み合わせた近似カーネルの提供。パラメーター保存型で効率的なアプローチ。
Stats
2O((dk/ǫ)d) · (n + m)O(1)
(dk/ǫ)O(dk) ·(n+m)O(1)
2O((dk/ǫ)d)·(n+m)O(1)
2O((dk/ǫ)d) ·(n+m)O(1)
(k log k / ǫ + a * O(b)^2b * kb / ǫ^3b)
(k log k / ǫ + a * O(b)^2b * kb / ǫ^3b)
(k log k / ǫ + a * O(b)^2b * kb / ǫ^3b)
(k log k / ǫ + a * O(b)^2b * kb / ǫ^3b)
(a, b ∈ N and ǫ ∈ (0, 1/2), there is a parameter-preserving (1−ǫ)-approximate kernel for Ka,b-free Max k-Weight SAT with O(k log k / ǫ + a · O(b)^2b · kb / ǫ^3b variables and (k/ε)^O(ab) clauses.)
(a, b ∈ N and ǫ ∈ (0, 1/2), there is an (1 − ε)-approximation algorithm for Ka,b-free Max k-Weight SAT that runs in time O(1/ε)^Oa,b(k·(log log k+(b−1)·log k)) · (n + m)^O(1).
(a, b ∈ N and ε ∈ (0, 1/4), there is a parameter-preserving (1 − ε)-APPA for Ka,b-free Max k-Weight SAT such that the output formula has the same set of variables and O(b · (2n)a+1/ε) clauses.
(a, b ∈ N and ε ∈ (0, 1/4), there is an approximate kernel for Ka,b-free Max k-Weight SAT with the same set of variables and O(b · (2n)a+1/ε) clauses.
Quotes
"Improved FPT Approximation Scheme and Approximate Kernel for Biclique-Free Max k-Weight SAT: Greedy Strikes Back" - Pasin Manurangsi
"In this work, we answer this question positively by giving an (1 − ε)-approximate kernel with dk/(ε*δ)*O(d) variables." - Pasin Manurangsi
"Our approximate kernel is based mainly on a couple of greedy strategies together with a sunflower lemma-style reduction rule." - Pasin Manurangsi