본 연구 논문은 많은 수의 목적 함수를 효율적으로 최적화하기 위해 기존의 파레토 최적해 집합 대신 소수의 해 집합을 활용하는 새로운 접근 방식을 제시합니다.
다목적 최적화는 현실 세계의 다양한 분야에서 마주하는 문제입니다. 제조, 엔지니어링 디자인, 의사 결정 시스템, 분자 생성 등 서로 상충되는 여러 목표를 동시에 고려해야 하는 상황에서 필 неизбе적으로 발생합니다. 이러한 문제는 단일 해법으로 모든 목표를 동시에 만족시키는 것이 불가능에 가깝기 때문에, 다양한 최적의 트레이드 오프를 제공하는 파레토 해 집합을 찾는 것이 중요합니다.
그러나 목적 함수의 수가 증가함에 따라 파레토 해 집합을 잘 근사하기 위해 필요한 해의 수는 기하급수적으로 증가합니다. 이로 인해 많은 수의 목적 함수를 처리하는 데 있어 기존의 방법은 적합하지 않게 됩니다. 수백 개의 해를 찾는 기존의 방법들은 많은 계산량과 높은 차원의 목적 벡터로 인해 의사 결정자에게 큰 부담을 안겨줍니다.
본 논문에서는 파레토 해 집합 전체를 근사하는 대신, 소수의 해(예: 5개)만으로도 많은 수의 목적 함수(예: 100개 이상)를 효과적으로 처리할 수 있는 새로운 접근 방식을 제시합니다. 이상적인 경우, 각 목적 함수는 작은 해 집합 내의 적어도 하나의 해에 의해 잘 처리되어야 합니다.
본 논문에서는 이러한 목표를 달성하기 위해 체비쇼프 집합(TCH-Set) 스칼라화 접근 방식을 제안합니다. 이 방법은 모든 목적 함수 값을 단일 함수로 스칼라화하여 최적의 작은 해 집합을 찾습니다. 이때, 각 목적 함수에 대한 선호도와 이상적인 값을 설정하여 최적화를 수행합니다.
체비쇼프 집합 스칼라화는 최대 및 최소 연산자를 포함하고 있어 미분이 불가능하다는 단점을 가지고 있습니다. 이러한 문제를 해결하기 위해 본 논문에서는 스무딩 기법을 적용한 STCH-Set 스칼라화를 제안합니다. 이 방법은 기존의 TCH-Set 스칼라화를 부드럽게 근사하여 기울기 기반 최적화 방법을 효율적으로 적용할 수 있도록 합니다.
본 논문에서는 제안된 방법의 효율성을 입증하기 위해 다양한 다목적 최적화 문제에 대한 실험을 수행했습니다. 실험 결과, 제안된 STCH-Set 스칼라화는 다른 방법들과 비교하여 가장 낮은 최악의 목적 함수 값을 달성했으며, 대부분의 비교에서 최상의 평균 목적 함수 값을 달성했습니다.
본 논문에서 제안된 체비쇼프 집합 스칼라화는 많은 수의 목적 함수를 효율적으로 최적화하기 위한 새로운 접근 방식을 제시합니다. 특히, 스무딩 기법을 적용한 STCH-Set 스칼라화는 기존 방법들에 비해 뛰어난 성능을 보여주었으며, 다양한 분야에서 실질적인 활용 가능성을 제시합니다.
To Another Language
from source content
arxiv.org
Key Insights Distilled From
by Xi Lin, Yilu... at arxiv.org 10-16-2024
https://arxiv.org/pdf/2405.19650.pdfDeeper Inquiries