本論文は、エージェントが非同期的に目的関数をサンプリングする分散環境下において、時間変化する二次計画問題の最適解を追跡するアルゴリズムを提案し、その有効性を理論とシミュレーションによって示したものである。
時間変化する最適化問題は、ロボット工学、信号処理、機械学習など、多くの分野で現れる。このような問題では、デジタル処理ユニットの使用により、エージェントは連続的に変化する目的関数を離散的な時点でサンプリングすることが一般的である。従来の研究では、すべてのエージェントが同じタイミングでサンプリングを行うことを前提としていた。しかし、現実の世界では、サンプリング、計算、通信など、エージェントの動作を同期させることは困難である。
本論文では、エージェントが非同期的に計算、通信、目的関数のサンプリングを行うことができる分散勾配最適化アルゴリズムを提案する。具体的には、時間変化する強凸二次計画問題(QP)に焦点を当て、エージェントが非同期的に目的関数をサンプリングする場合、エージェントの集団的な動作は、一般に、時間変化する非凸二次目的関数を最小化することと等価になることを示す。
提案アルゴリズムは、非同期ブロック座標降下法(BCD)に基づいており、各エージェントは決定ベクトルのサブセットのみを更新する。エージェントは、目的関数を一定期間ごとにサンプリングし、その間に取得した情報に基づいて計算と通信を非同期的に行う。
提案アルゴリズムの追跡誤差を解析し、エージェントが時間変化する非凸問題の解を既知の誤差範囲内で追跡できることを示す。さらに、エージェントが元の時間変化QPの解を既知のサイズの誤差範囲内で追跡できることを示す。この誤差範囲は、(1)エージェントが目的関数をサンプリングする頻度、(2)エージェントがサンプリング間に行う計算と通信の回数、(3)基礎となる問題の時間変化率に依存する。
提案アルゴリズムの有効性を検証するために、2つのシミュレーション実験を行った。その結果、提案アルゴリズムは、エージェントが非同期的に動作し、目的関数が時間変化する場合でも、最適解を効果的に追跡できることが確認された。
本論文では、非同期目的関数サンプリングを用いた分散非同期時変二次計画法を提案し、その有効性を理論とシミュレーションによって示した。提案アルゴリズムは、ロボット工学、電力網、通信ネットワークなど、様々な分野における分散最適化問題に適用できる可能性がある。
In un'altra lingua
dal contenuto originale
arxiv.org
Approfondimenti chiave tratti da
by Gabriel Behr... alle arxiv.org 11-19-2024
https://arxiv.org/pdf/2411.11732.pdfDomande più approfondite