Yang, P., Zong, C., Huang, S., Feng, L., & An, B. (2024). DUAL-HEAD KNOWLEDGE DISTILLATION: ENHANCING LOGITS UTILIZATION WITH AN AUXILIARY HEAD. arXiv preprint arXiv:2411.08937.
This paper investigates the challenges of combining probability-level and logit-level loss functions in knowledge distillation (KD) and proposes a novel method called Dual-Head Knowledge Distillation (DHKD) to address the limitations of existing approaches.
The researchers analyze the gradient behavior of combined loss functions, revealing conflicting optimization directions for the linear classifier. They propose DHKD, which decouples the classification head into two parts: one trained with the traditional cross-entropy loss and another with a modified logit-level loss (BinaryKL-Norm). This separation allows the model to leverage the benefits of both losses without negative interactions. Additionally, they introduce a gradient alignment technique and a nonlinear auxiliary classifier to further enhance performance.
DHKD offers a novel and effective approach to knowledge distillation by addressing the limitations of combining different loss functions. The proposed dual-head architecture, along with gradient alignment and a nonlinear auxiliary classifier, significantly improves the performance of student models, making it a promising technique for model compression and efficient deep learning.
This research contributes to the field of knowledge distillation by providing a deeper understanding of the interactions between different loss functions and proposing a practical solution to overcome their limitations. DHKD's effectiveness in improving student model accuracy has significant implications for deploying deep learning models on resource-constrained devices.
The paper primarily focuses on image classification tasks. Further research could explore the applicability and effectiveness of DHKD in other domains, such as natural language processing or object detection. Additionally, investigating the optimal design and training strategies for the auxiliary classifier could further enhance DHKD's performance.
In un'altra lingua
dal contenuto originale
arxiv.org
Approfondimenti chiave tratti da
by Penghui Yang... alle arxiv.org 11-15-2024
https://arxiv.org/pdf/2411.08937.pdfDomande più approfondite