toplogo
サインイン

EC-NAS: Energy Consumption Aware Tabular Benchmarks for Neural Architecture Search


核心概念
Neural architecture search benefits from energy-aware tabular benchmarks to optimize energy consumption and performance.
要約
Recent uptick in energy consumption from deep learning models. EC-NAS introduces an enhanced tabular benchmark focusing on energy efficiency. Surrogate model predicts energy consumption, aiding in identifying energy-lean architectures. Multi-objective optimization algorithms balance energy usage and accuracy. Importance of integrating energy consumption as a pivotal metric in NAS benchmarks. Exploration of efficient architectures without compromising performance. MOO strategies facilitate sustainable computing by optimizing carbon footprint and energy efficiency. Directory: Introduction to Energy Consumption in NAS NAS strategies explore model architectures based on training metrics. Computational demands lead to environmental concerns due to high energy consumption. Energy Awareness in NAS EC-NAS benchmark emphasizes the imperative of energy efficiency in NAS. Architectural design tailored for CIFAR-10 image classification with configurable feedforward networks. Energy Measures in NAS Traditional benchmarks fall short in providing complete energy consumption profiles. Carbontracker tool used to observe total energy costs, computational times, and carbon footprints. Surrogate Model for Energy Estimation Surrogate model predicts energy consumption patterns effectively. Strong correlation between predicted and actual values demonstrated. Dataset Analysis and Hardware Consistency Study of architectural characteristics, impacts on efficiency, performance, and hardware influence on energy costs. Leveraging EC-NAS in NAS Strategies Tabular benchmarks offer insights into multi-objective optimization for sustainable computing. Multi-objective Optimization Baselines SEMOA algorithm iteratively updates candidate solutions towards Pareto-optimal solutions. Additional Discussion on Hardware Accelerators, Surrogate Model Adaptability, Resource-constrained NAS, and MOO Baselines Hyperparameters
統計
"The vast architecture space introduces challenges in direct energy estimation." "Our surrogate model adeptly predicts energy consumption patterns." "Models characterized by larger DAGs show significant variability in training time and energy consumption."
引用

抽出されたキーインサイト

by Pedram Bakht... 場所 arxiv.org 03-25-2024

https://arxiv.org/pdf/2210.06015.pdf
EC-NAS

深掘り質問

How can the integration of carbon footprint metrics enhance the sustainability of machine learning models

機械学習モデルの持続可能性を向上させるために、炭素排出量メトリクスを統合することは重要です。まず第一に、炭素排出量メトリクスを導入することで、モデルのエネルギー消費や環境影響を定量化し、透明性を高めることができます。これにより、開発者や利用者はエネルギー効率の高い選択肢を容易に特定し、持続可能な意思決定が促進されます。また、炭素排出量メトリクスの統合は企業や組織が社会的責任を果たす手段としても役立ちます。例えば、企業が自社のAIプロジェクトのカーボンフットプリントを測定し報告することで、「グリーンAI」への取り組みや地球温暖化対策への貢献度合いが可視化されます。

What are the potential limitations of using surrogate models for predicting complex architectural spaces

複雑なアーキテクチャ空間予測にサロゲートモデルを使用する際の潜在的な制限事項はいくつかあります。まず第一に、サロゲートモデルは元々訓練されたアーキテクチャセットから派生した情報しか利用できないため、新規および未知のアーキテクチャパターンに対応しづらい点が挙げられます。この制約からくる予測精度低下や汎用性不足は実世界問題解決能力に影響します。さらにサロゲートモデルでは複雑な相互作用や非直交関係も捉えることが難しく,多目的最適化問題では全体像把握及び妥当性確保面でも課題です。

How can resource-constrained NAS approaches benefit from multi-objective optimization strategies beyond traditional benchmarks

資源制約型NASアプローチ(Resource-constrained NAS)は従来型基準以上だけでなく,多目的最適化戦略からも恩恵受ける可能性があります.MOO戦略(Multi-objective Optimization Strategies)では,単一目標最適化法(SOO)よりも広範囲かつ均衡ある解探索提供します.具体的例えば,MOO方法論中SH-EMOA, MSE-HVI等旧有手法比較評価後,SEMOSA戦略導入時平均パフォーマンス指数改善見込み示唆されました.これら手法活用質・速・省三大原則兼備NAS方針形成支援し,効率良好かつ持久可能ナラティブ強調します.
0
visual_icon
generate_icon
translate_icon
scholar_search_icon
star