The authors introduce a novel geometric integer-valued generalized autoregressive conditional heteroscedastic (NoGe-INGARCH) model and discuss its properties. The model is defined as:
Xt | Ft-1 ~ NoGe(θt, φ), where 1-φ/θt = λt = α0 + Σ αi Xt-i + Σ βj λt-j
The authors derive the necessary and sufficient conditions for stationarity of the NoGe-INGARCH model and provide the expressions for the unconditional mean and variance.
For parameter estimation, the authors use two methods: conditional maximum likelihood estimation (CMLE) and Bayesian estimation using the Hamiltonian Monte Carlo (HMC) algorithm. The HMC algorithm is employed to draw samples from the posterior distribution of the model parameters.
The simulation study demonstrates that the Bayesian estimates obtained using the HMC algorithm have lower mean absolute bias and root mean squared error compared to the CMLE, especially for smaller sample sizes. The authors also apply the proposed model and estimation techniques to two real-world datasets: weekly Hepatitis-B cases and stock transaction counts. The results show that the NoGe-INGARCH model outperforms other INGARCH models in terms of model selection criteria.
Naar een andere taal
vanuit de broninhoud
arxiv.org
Belangrijkste Inzichten Gedestilleerd Uit
by Divya Kutten... om arxiv.org 10-03-2024
https://arxiv.org/pdf/2410.01283.pdfDiepere vragen