Die Autoren entwickeln eine numerische Methode zur Lösung einer Klasse von konvexen graphenstrukturierten Tensor-Optimierungsproblemen. Diese Probleme treten in vielen Anwendungen auf, wie z.B. in unbalancierten Optimal-Transport-Problemen und Multi-Spezies-Potential-Mean-Field-Spielen.
Die Methode basiert auf Koordinatenaufstieg in einem Lagrange-Dual und es wird bewiesen, dass der Algorithmus unter milden Annahmen global konvergiert. Unter strengeren Annahmen konvergiert der Algorithmus sogar R-linear.
Um die Koordinatenaufstiegsschritte durchzuführen, müssen Projektionen des Tensors berechnet werden. Dies ist im Allgemeinen nicht effizient möglich. Für bestimmte Graphstrukturen, wie sie in Multi-Spezies-Potential-Mean-Field-Spielen auftreten, können diese Projektionen jedoch effizient berechnet werden.
Die Autoren illustrieren die Methodik anhand eines numerischen Beispiels aus dieser Problemklasse.
Naar een andere taal
vanuit de broninhoud
arxiv.org
Belangrijkste Inzichten Gedestilleerd Uit
by Axel Ringh,I... om arxiv.org 03-25-2024
https://arxiv.org/pdf/2112.05645.pdfDiepere vragen