The paper investigates the conditions for local invariance of finite dimensional submanifolds for solutions to stochastic partial differential equations (SPDEs) in the framework of the variational approach.
The authors first provide the required background on SPDEs in continuously embedded spaces and SPDEs in the framework of the variational approach. They then present their main results on invariant manifolds in two settings:
When the Banach space K is a separable Hilbert space:
The general situation with Banach spaces G, K:
The authors then apply these results to construct examples of invariant submanifolds in Hermite Sobolev spaces and to characterize linear submanifolds for the stochastic p-Laplace equation.
Naar een andere taal
vanuit de broninhoud
arxiv.org
Belangrijkste Inzichten Gedestilleerd Uit
by Rajeev Bhask... om arxiv.org 10-03-2024
https://arxiv.org/pdf/2309.03823.pdfDiepere vragen