Grunnleggende konsepter
新しい距離オラクルの提案と、最適なトレードオフを実現するための革新的な手法に焦点を当てる。
Sammendrag
このコンテンツは、重要なアルゴリズムの提案に関する詳細な説明と、その背後にある技術的課題に焦点を当てています。長さ制限されたエキスパンダーを活用して、動的アルゴリズムの開発や最適化が行われています。特に、領域間の移動カットや局所フローなどの概念が導入され、問題解決へのアプローチが示されています。
Statistikk
2poly(1/ǫ)-approximate distance between u and v in poly(1/ǫ) log log n query time.
(log log n)2O(1/ǫ3) approximation with amortized update time of nǫ and query time of 2poly(1/ǫ) log n log log n.
(5/3− ǫ)-approximation cannot have n2−Ω(1) worst-case update time and no(1) query time.
Sitater
Open Question 1.1. Is there a deterministic fully dynamic (or even decremental) distance oracle with constant approximation and n1−Ω(1) update and query time?
Open Question 1.2. Is there a fully dynamic (or even decremental) distance oracle with o(n)-approximation, n2−Ω(1) worst-case update time, and no(1) query time?
The technique we use to prove Theorem 1.3 completely bypasses the Even-Shiloach tree.
Our final distance oracle also follows this standard approach.
An independent work by Kyng, Meierhans and Probst Gutenberg also obtains deterministic fully dynamic approximate distance oracles with worst-case update time using completely different techniques.