Die Verbindung zwischen Hamiltonizität und Unabhängigkeitszahlen von Graphen wird untersucht. Neue algorithmische Perspektiven auf klassische Probleme werden präsentiert. Die Forschung zeigt, dass viele Probleme in ungerichteten Graphen, wie Hamiltonscher Pfad und Zyklus, Pfadabdeckung, größte Verknüpfung und topologische Minoren, durch die Unabhängigkeitszahl parametrisiert werden können. Die Ergebnisse markieren die ersten FPT-Probleme für diese Parameterisierung. Die Arbeit erweitert den algorithmischen Umfang des Gallai-Milgram-Theorems und untersucht, ob ein Graph durch weniger als α(G) - k vertex-disjunkte Pfade abgedeckt werden kann, parametrisiert durch k.
Para outro idioma
do conteúdo fonte
arxiv.org
Principais Insights Extraídos De
by Fedor V. Fom... às arxiv.org 03-12-2024
https://arxiv.org/pdf/2403.05943.pdfPerguntas Mais Profundas