The paper presents a formal system called Primitive Recursive Dependent Type Theory (PRTT), which is a subtheory of Martin-Löf Type Theory (MLTT). The key idea is to restrict the elimination principle of the natural numbers type N to a universe U0 that does not contain Π-types. This ensures that all definable functions N → N are primitive recursive.
The authors first define the notion of primitive recursive functions and explain why one might expect MLTT with natural numbers but without Π-types to capture exactly primitive recursive functions. They then introduce the synthetic Tait computability framework, which is used to construct a model of PRTT in a topos of sheaves on a site of primitive recursive functions.
The main technical results are:
The paper also discusses extensions of PRTT, such as adding a comonadic modality, an internal universe of codes for primitive recursive constructions, and connections to cubical type theory.
เป็นภาษาอื่น
จากเนื้อหาต้นฉบับ
arxiv.org
ข้อมูลเชิงลึกที่สำคัญจาก
by Ulrik Buchho... ที่ arxiv.org 04-02-2024
https://arxiv.org/pdf/2404.01011.pdfสอบถามเพิ่มเติม