Temel Kavramlar
本論文は、移動領域における輸送拡散問題に対して、離散レベルで保存性を持つ新しい数値解法を提案する。オイラー的な時間ステッピングスキームと非適合有限要素法を組み合わせ、ゴースト罰則安定化を用いることで、任意の領域との交差に対して頑健な手法を実現している。
Özet
本論文は、移動領域における輸送拡散問題に対する新しい保存的な数値解法を提案している。主な内容は以下の通り:
- 移動領域における輸送拡散問題の定式化
- 時間依存領域Ω(t)内の輸送拡散方程式を考える
- レイノルズの輸送定理を用いて、離散レベルでの保存性を導出する
- 時間半離散スキーム
- 暗黙的なオイラー時間ステッピングを用いる
- テスト関数の拡張を用いることで、離散レベルでの保存性を実現する
- 完全離散スキーム
- 非適合有限要素法(CutFEM)を用いた空間離散化
- ゴースト罰則安定化を用いて、任意の領域との交差に対する頑健性を確保する
- BDF1およびBDF2の時間離散化を考える
- 安定性解析
- 数値例
- 2次元および3次元の数値例を示し、最適な収束性を確認する
本手法は、移動領域における輸送拡散問題に対して、離散レベルでの保存性と頑健性を両立した新しい数値解法を提供している。
İstatistikler
移動領域における輸送拡散方程式の保存則:
d
dt ∫Ω(t) u dx = ∫Ω(t) f dx