本文為演算法領域中關於動態二元搜尋樹的研究論文。
動態二元搜尋樹(BST)是一種重要的資料結構,用於維護一個有序集合並支援搜尋、插入和刪除等操作。動態最佳性問題是該領域的一個重要開放性問題,其目標是設計一種線上 BST 演算法,使其在任何存取序列上的效能都能與離線最佳演算法相媲美。
Wilber 上下界是動態 BST 模型中兩個經典的下界,分別稱為交替界(Alternation bound)和漏斗界(Funnel bound)。交替界基於在固定參考樹上存取序列產生的左右子樹交替次數,而漏斗界則基於一種稱為「移動到根」(move-to-root)的演算法的幾何表示。
本文的研究結果加深了我們對動態 BST 模型中 Wilber 上下界的理解,並為設計更優的動態 BST 演算法提供了理論基礎。
Başka Bir Dile
kaynak içeriğinden
arxiv.org
Önemli Bilgiler Şuradan Elde Edildi
by Shunhua Jian... : arxiv.org 11-22-2024
https://arxiv.org/pdf/2411.14387.pdfDaha Derin Sorular