실체 코오르비트 임베딩을 통한 오비폴드 몫 공간의 안정적 표현
실내적 내적 공간 V와 선형 등장 군 G에 대해, 우리는 G-불변 실수 함수 군을 구성하여 이를 코오르비트 필터 뱅크라 부르며, 이는 이전의 최대 필터 뱅크와 유한 코오르비트 필터 뱅크 개념을 통합한다. V = Rd이고 G가 콤팩트일 때, 우리는 적절한 코오르비트 필터 뱅크가 최대 차원 궤도에서 몫 거리에 대해 국소적으로 하한 립시츠 연속이라는 것을 보인다. 또한 구면 궤도 공간 Sd−1/G가 리만 오비폴드일 때, 우리는 적절한 코오르비트 필터 뱅크가 몫 거리에 대해 양방향 립시츠 연속이라는 것을 보인다.