核心概念
本文針對一類由乘法高斯雜訊驅動的拋物線隨機偏微分方程(SPDE),探討其解的冪變異數和其他相關泛函的中心極限定理。研究發現,當雜訊的空間相關函數由階數 α ∈ (0, 1) 的里斯核給出時,儘管乘法雜訊係數的正則性較低,但中心極限定理中並不存在漸近偏差。
Chong, C. (2024). High-frequency analysis of parabolic stochastic PDEs with multiplicative noise. arXiv preprint arXiv:1908.04145v2.
本研究旨在探討一類由乘法高斯雜訊驅動的拋物線隨機偏微分方程(SPDE)解的冪變異數和其他相關泛函的二階行為,並證明其中心極限定理。