核心概念
對於一個絕對非分歧的 p 進域 K,本文建立了一個僅依賴於給定素數 p 和整數 i 的分歧界,用於與高度最多為 i 的 Wach 模組相關聯的模 p Galois 表示。
統計資料
v > α + max{0, ip/(pα(p −1) − (p −1))},其中 α 是滿足 pα > ip/(p −1) 的最小整數。
b = i/(p −1), a = pi/(p −1) = pb.
ps > c(p −1)
ps > a, that is, (p −1)ps−1 > i.
引述
"Results of this type have a long history, going back to Fontaine’s paper [Fon85] on the non–existence of Abelian varietes over Q with good reduction everywhere."
"It is worth noting that the above results also apply to the geometric setting (b), resp. its semistable analogue, using various comparison theorems [FM87,Car08,LL20]; however, these typically apply only when ie < p−1."
"While this has been achieved, the obtained result is not optimal: namely, in the setting ie < p −1 where the bounds of [Hat09,CL11] apply to étale cohomology of varieties with semistable reduction, the bound of [Čou21] essentially agrees with these semistable bounds."