toplogo
Увійти

Adversarial Adaptive Sampling: Unifying PINN and Optimal Transport for PDE Approximation at ICLR 2024


Основні поняття
提案されたAdversarial Adaptive Sampling(AAS)アプローチは、PDEのニューラルネットワーク近似においてPINNと最適輸送を統合しました。
Анотація
  • 論文はICLR 2024で発表された。
  • PDEのニューラルネットワーク近似におけるAdversarial Adaptive Sampling(AAS)の新しいアプローチが提案された。
  • ニューラルネットワーク近似におけるランダムサンプルの重要性が強調されている。
  • AASは、トレーニングセットの進化を最適輸送理論から調査することが可能。
  • 数値結果は、PINNと最適輸送を統合することでPDEの効果的なトレーニングを実証している。

Introduction:

The paper introduces the Adversarial Adaptive Sampling (AAS) approach that unifies Physics-Informed Neural Networks (PINN) and optimal transport for approximating Partial Differential Equations (PDEs). It was presented at ICLR 2024.

Key Concepts:

  1. Solving PDEs using neural network approximation.
  2. Importance of random samples in training PINNs effectively.
  3. Evolution of the training set analyzed through optimal transport theory.
  4. Numerical results demonstrate the significance of random samples in training PINNs.
edit_icon

Налаштувати зведення

edit_icon

Переписати за допомогою ШІ

edit_icon

Згенерувати цитати

translate_icon

Перекласти джерело

visual_icon

Згенерувати інтелект-карту

visit_icon

Перейти до джерела

Статистика
Published as a conference paper at ICLR 2024
Цитати

Ключові висновки, отримані з

by Kejun Tang,J... о arxiv.org 03-18-2024

https://arxiv.org/pdf/2305.18702.pdf
Adversarial Adaptive Sampling

Глибші Запити

どのようにAASアプローチがPINNと最適輸送を統合していますか

Adversarial Adaptive Sampling (AAS) integrates Physics-Informed Neural Networks (PINN) and optimal transport theory to improve the approximation of Partial Differential Equations (PDEs). In this approach, a neural network model is used to approximate the solution of the PDE, while a deep generative model adjusts the random samples in the training set. The key idea behind AAS is to minimize both the residual induced by the neural network model and optimize the distribution of random samples in order to reduce statistical errors introduced during training. The AAS framework formulates a minmax problem where one minimizes the residual error given by the neural network model and simultaneously maximizes over a probability density function that represents how well these residuals are distributed across different points in space. By embedding Wasserstein distance between distributions into the loss function, AAS ensures that not only is the residual minimized but also that it converges towards a uniform distribution. This dual optimization process helps reduce variance in Monte Carlo approximations and improves accuracy for fixed sample sizes.

提案された手法は、高次元PDE問題にどのように対処していますか

To address high-dimensional nonlinear PDE problems, AAS employs an adaptive sampling strategy that refines collocation points based on an error indicator derived from residual profiles. By adjusting random samples using deep generative models within an adversarial training framework, AAS aims to maintain smooth residual profiles throughout training. This adaptability allows for more effective learning even in scenarios with low regularity or high-dimensional spaces where traditional methods may struggle due to sparse information or localized features caused by dimensionality challenges. In numerical experiments involving benchmark test problems like peak equations and multi-peak equations as well as ten-dimensional nonlinear PDEs, AAS demonstrates superior performance compared to existing adaptive sampling methods such as DAS-G and DAS-R algorithms. The results show accurate approximations achieved through optimized training sets generated dynamically during learning processes.

この研究から得られる知見は、他の科学計算分野へどのように応用できますか

The insights gained from this research have broad implications beyond solving PDEs using machine learning techniques. The concept of adversarial adaptive sampling can be applied across various scientific computing domains where accurate modeling of complex systems is essential. For example: Fluid Dynamics: Adapting mesh grids based on error indicators could enhance simulations of fluid flow phenomena with varying complexities. Material Science: Optimizing data selection strategies through adversarial approaches can improve material property predictions using ML models. Climate Modeling: Incorporating adaptive sampling techniques could lead to better climate change projections by refining input data based on evolving patterns. Overall, leveraging concepts from AAS can advance computational methodologies in diverse fields requiring precise modeling capabilities under uncertain conditions or high-dimensional spaces.
0
star