本論文では、多相 Mullins-Sekerka 流れの鋭い界面定式化に対して、パラメトリック有限要素法を用いた完全離散化スキームを提案する。このスキームは、体積保存性と非条件的安定性を備えており、さらに離散曲線上の頂点の自然な接線速度により、実際の計算では再メッシュが不要となる。