본 논문은 동적 최대 매칭 문제를 다룬다. 이 문제에서는 간선 삽입 및 삭제에 따라 변화하는 그래프에서 최대 매칭의 근사치를 효율적으로 유지하는 것이 목표이다. 특히 임의의 작은 상수 ε > 0에 대해 (1-ε) 근사 최대 매칭을 유지하는 알고리즘에 초점을 맞춘다.
최근까지 이 문제에 대한 가장 빠른 알고리즘은 n 시간이 소요되었다. 이 bound는 최근 약간 개선되었지만, n^(1-Ω(1)) 시간으로 개선하는 것이 여전히 주요 미해결 문제로 남아있다.
본 논문은 새로운 알고리즘을 제안한다. 이 알고리즘은 순서화된 Ruzsa-Szemerédi (ORS) 그래프의 밀도에 따라 업데이트 시간이 달라진다. ORS 그래프는 Ruzsa-Szemerédi (RS) 그래프의 일반화된 형태이다. ORS 그래프의 밀도를 결정하는 것은 조합론에서 어려운 문제이지만, 기존 ORS 그래프 구성이 최적이라면 제안 알고리즘의 업데이트 시간은 n^(1/2+O(ε))이 된다. 이는 기존 근선형 시간 알고리즘에 비해 크게 개선된 것이다.
또한 본 논문은 선형 크기 매칭을 가진 ORS 및 RS 그래프의 밀도에 대한 더 나은 상한을 제시한다. 이전 최선의 상한은 Fox의 삼각형 제거 lemma에 기반한 것이었다.
Sang ngôn ngữ khác
từ nội dung nguồn
arxiv.org
Thông tin chi tiết chính được chắt lọc từ
by Soheil Behne... lúc arxiv.org 04-10-2024
https://arxiv.org/pdf/2404.06069.pdfYêu cầu sâu hơn