이 논문은 실수 닫힌 지수 필드(RCEF)의 지수 정수 부분(EIP)의 제1차 이론을 다룬다.
먼저, LOR ∪{2x}와 LOR ∪{P2} 언어에서의 EIP 이론을 공리화하였다. LOR ∪{2x} 이론은 IOpen에 2x의 기본적인 대수적 성질을 나타내는 유한 개의 공리를 추가한 것이다. LOR ∪{P2} 이론은 IOpen에 2의 멱승 집합을 나타내는 P2 술어의 공리를 추가한 것이다.
가장 중요한 이론인 LOR 언어에서의 TEIP 이론은 더 복잡하다. 이 이론은 IOpen을 확장하여 정수 게임의 승리 전략 존재를 나타내는 무한 개의 문장으로 구성된다. 이 게임은 2의 멱승을 두는 것이 승리 전략이 되도록 설계되었다.
TEIP가 IOpen의 적절한 확장임을 보였다. TEIP가 IOpen 위에서 유한 공리화 가능한지는 열린 문제로 남겨두었지만, 각 공리의 바깥쪽 양화사 쌍을 제거한 공식들이 진 계층을 이룬다는 것을 보였다. 이는 2의 멱승이 아닌 임의의 수로 게임을 시작할 때, 첫 번째 플레이어가 승리하기 위해 필요한 라운드 수가 무한대라는 것을 의미한다.
Sang ngôn ngữ khác
từ nội dung nguồn
arxiv.org
Thông tin chi tiết chính được chắt lọc từ
by Emil... lúc arxiv.org 04-11-2024
https://arxiv.org/pdf/2404.06888.pdfYêu cầu sâu hơn