Khái niệm cốt lõi
이 논문에서는 연속시간 다중 입력 다중 출력 기술자 시스템의 매개변수를 식별하는 시간 영역 식별 기법을 연구한다. 시스템 행렬은 선형 분수 변환을 통해 매개변수에 영향을 받으며, 샘플링은 느리고 비균일할 수 있으며 나이퀴스트 주파수 제한을 만족할 필요가 없다. 이 모델은 네트워크 동적 시스템의 동작을 설명하는 데 사용될 수 있으며, 얻은 결과는 일반 상태 공간 모델과 집중 시스템에 직접 적용될 수 있다. 임의 신호로 자극된 시스템의 과도 응답과 정상 상태 응답에 대한 명시적 공식이 각각 얻어졌다. 전달 함수 행렬의 값, 그 미분, 임의 방향의 우측 접선 보간 등을 입출력 실험 데이터로부터 추정할 수 있음이 밝혀졌다. 이를 바탕으로 기술자 시스템의 매개변수와 전달 함수 행렬 값을 추정하는 알고리즘이 제안되었으며, 그 점근적 무편향성, 일치성 등의 특성이 분석되었다.
Tóm tắt
이 논문은 연속시간 다중 입력 다중 출력 기술자 시스템의 매개변수 식별 문제를 다룬다. 시스템 행렬은 매개변수에 따라 선형 분수 변환 형태로 변화하며, 샘플링은 느리고 비균일할 수 있다.
주요 내용은 다음과 같다:
- 시스템 과도 응답과 정상 상태 응답을 명시적으로 분해하였다. 정상 상태 응답은 시스템 전달 함수 행렬의 값, 미분, 우측 접선 보간 등을 반영한다.
- 이를 바탕으로 전달 함수 행렬 값과 시스템 매개변수를 동시에 추정하는 알고리즘을 제안하였다. 추정량의 점근적 무편향성, 일치성 등의 특성을 분석하였다.
- 간단한 수치 예제를 통해 제안된 추정 알고리즘의 장점을 보였다. 기존 최소 자승법 기반 추정에서 발생하는 지역 최소값 문제를 성공적으로 회피할 수 있음을 확인하였다.
Thống kê
시스템 행렬 A(θ), B(θ), C(θ), D(θ)는 매개변수 θ에 따라 선형 분수 변환 형태로 변화한다.
입력 신호 u(t)는 자율 선형 시불변 시스템 Σs에 의해 생성된다.
샘플링은 느리고 비균일할 수 있으며 나이퀴스트 주파수 제한을 만족할 필요가 없다.
Trích dẫn
"이 모델은 네트워크 동적 시스템의 동작을 설명하는 데 사용될 수 있으며, 얻은 결과는 일반 상태 공간 모델과 집중 시스템에 직접 적용될 수 있다."
"정상 상태 응답은 시스템 전달 함수 행렬의 값, 미분, 우측 접선 보간 등을 반영한다."
"제안된 추정 알고리즘의 장점을 확인하였다. 기존 최소 자승법 기반 추정에서 발생하는 지역 최소값 문제를 성공적으로 회피할 수 있었다."