In dieser Arbeit werden starke Unerreichbarkeitsresultate für das Max-k-Durchmesser-Clustering-Problem (wobei k fest ist) im euklidischen Metrik und im ℓ1-Metrik präsentiert, sogar wenn k = 3 ist. Diese Ergebnisse sind überraschend, da a priori nicht klar ist, warum Max-3-Durchmesser keine PTAS zulässt, ähnlich wie andere Clustering-Ziele.
Zunächst wird das Ergebnis für das ℓ1-Metrik präsentiert. Es wird gezeigt, dass für jedes ε > 0 und k ≥ 3, die Approximation von Max-k-Durchmesser im ℓ1-Metrik (und Hammingmetrik) innerhalb eines Faktors von 1,5 - ε NP-schwer ist.
Darüber hinaus wird im euklidischen Metrik bewiesen, dass für jedes k ≥ 3, die Approximation von Max-k-Durchmesser innerhalb eines Faktors von 1,304 NP-schwer ist. Dieses Ergebnis ist besonders bemerkenswert, da das euklidische Metrik näher-isometrisch in alle ℓp-Metriken einbettbar ist und somit die Unerreichbarkeit innerhalb eines Faktors von 1,304 auf alle ℓp-Metriken überträgt.
Die Haupttechniken, die in dieser Arbeit eingeführt werden, sind die Konstruktion von "Cloud-Systemen", die Hypergraphen in ℓp-Metriken einbetten, so dass die Chromatische Zahl des Hypergraphen mit der Qualität des Max-k-Durchmesser-Clusterings der eingebetteten Punktmenge in Beziehung steht.
Sang ngôn ngữ khác
từ nội dung nguồn
arxiv.org
Thông tin chi tiết chính được chắt lọc từ
by Henry Fleisc... lúc arxiv.org 04-08-2024
https://arxiv.org/pdf/2312.02097.pdfYêu cầu sâu hơn