本論文介紹了一種名為 QR Sort 的新型非比較整數排序算法。該算法基於商餘定理和計數排序子程序,能夠穩定地對輸入序列進行排序。
QR Sort 算法的核心思想是將每個輸入元素除以一個預先指定的除數,並使用得到的商和餘數作為排序鍵值。該算法執行兩次穩定排序:首先根據餘數鍵值對輸入序列進行排序,然後根據商鍵值對排序後的序列進行排序,最終得到有序序列。
QR Sort 的時間複雜度為 O(n + d + m/d),其中 n 表示輸入序列長度,d 表示預先指定的正整數除數,m 表示輸入序列值的範圍加 1。當 d = √m 時,時間複雜度最小,為 O(n + √m)。當 m ≤ O(n^2) 時,QR Sort 的時間複雜度為線性時間 O(n)。
論文提出了使用計數排序子程序實現 QR Sort 的建議,並提供了一個最佳除數值的選擇方法,以最小化時間複雜度。此外,論文還提出了一些針對不同輸入序列組成的優化策略,例如:
論文通過實驗比較了 QR Sort 與其他排序算法(歸併排序、快速排序、計數排序和基數排序)的計算性能。實驗結果表明,在各種輸入數組長度和元素範圍下,QR Sort 的性能優於歸併排序、快速排序和基數排序。特別是在輸入數組元素範圍較大的情況下,QR Sort 的性能優勢更加明顯。
QR Sort 是一種高效的非比較整數排序算法,尤其適用於具有較大值範圍的數據集。未來,QR Sort 有望應用於優先級任務、圖論和數據庫平台等領域,以提高計算效率。
Sang ngôn ngữ khác
từ nội dung nguồn
arxiv.org
Thông tin chi tiết chính được chắt lọc từ
by Randolph T. ... lúc arxiv.org 11-13-2024
https://arxiv.org/pdf/2411.07526.pdfYêu cầu sâu hơn