Bibliographic Information: Xu, G., Wu, X., Liao, W., Wu, X., Huang, Q., & Lib, C. (2024). DBF-Net: A Dual-Branch Network with Feature Fusion for Ultrasound Image Segmentation. arXiv preprint arXiv:2411.11116v1.
Research Objective: This research paper introduces DBF-Net, a new deep learning model designed to enhance the accuracy of ultrasound image segmentation, particularly focusing on improving the delineation of lesion boundaries.
Methodology: DBF-Net utilizes a dual-branch architecture within a deep neural network framework. This structure allows the model to learn the relationship between the body of a lesion and its boundary under supervision. The key innovation lies in the Feature Fusion and Supervision (FFS) block, which processes both body and boundary information concurrently. Additionally, a novel feature fusion module is proposed to facilitate the integration and interaction of body and boundary information. The model's performance is evaluated on three publicly available ultrasound image datasets: BUSI (breast cancer), UNS (brachial plexus nerves), and UHES (infantile hemangioma).
Key Findings: DBF-Net demonstrates superior performance compared to existing state-of-the-art methods on the three datasets. Specifically, it achieves a Dice Similarity Coefficient (DSC) of 81.05±10.44% for breast cancer segmentation, 76.41±5.52% for brachial plexus nerves segmentation, and 87.75±4.18% for infantile hemangioma segmentation.
Main Conclusions: The integration of body and boundary information, coupled with the proposed feature fusion module, significantly contributes to DBF-Net's effectiveness in ultrasound image segmentation. The authors suggest that this approach holds promise for advancing the accuracy of lesion delineation in ultrasound images.
Significance: Accurate segmentation of ultrasound images is crucial for various medical diagnoses and treatment planning. DBF-Net's improved accuracy, especially at lesion boundaries, could potentially lead to more reliable diagnoses and better treatment outcomes.
Limitations and Future Research: The study is limited by the size of the datasets used. Future research could explore the performance of DBF-Net on larger and more diverse datasets. Additionally, investigating the generalizability of DBF-Net to other medical image segmentation tasks could be beneficial.
Sang ngôn ngữ khác
từ nội dung nguồn
arxiv.org
Thông tin chi tiết chính được chắt lọc từ
by Guoping Xu, ... lúc arxiv.org 11-19-2024
https://arxiv.org/pdf/2411.11116.pdfYêu cầu sâu hơn