본 논문은 코브-더글라스 생산 함수를 특징짓는 수학적 속성에 대해 분석합니다. 특히, 규모에 대한 수익이 일정하고 모든 산출량 수준에서 비용을 최소화할 때 노동 비용 분배가 일정하게 유지되는 기업의 경우, 그 생산 함수가 코브-더글라스 함수임을 증명합니다.
코브-더글라스 생산 함수는 경제학에서 노동(L)과 자본(K)의 투입으로 생산량(Y)을 나타내는 데 사용됩니다. 함수 형태는 다음과 같습니다.
여기서 A는 기술 수준을 나타내는 양의 상수이며, α는 0과 1 사이의 값으로 자본의 생산 기여도를 나타냅니다.
본 논문은 미분 가능한 함수 Y가 다음 두 조건을 만족할 경우에만 코브-더글라스 함수임을 증명합니다.
본 논문의 증명은 규모에 대한 수익이 일정하고 모든 산출량 수준에서 비용을 최소화할 때 노동 비용 분배가 일정하게 유지된다면, 그 생산 함수는 반드시 코브-더글라스 함수임을 보여줍니다. 즉, 기업이 주어진 산출량 수준에 대해 비용을 최소화할 때 노동 비용 분배가 일정하게 유지된다면, 그 기업의 생산 함수는 코브-더글라스 함수로 특징지어질 수 있습니다.
본 논문은 코브-더글라스 생산 함수를 특징짓는 새로운 속성을 제시하고, 이를 통해 코브-더글라스 함수의 수학적 기반을 더욱 명확히 밝혔습니다.
翻译成其他语言
从原文生成
arxiv.org
更深入的查询