국소적으로 정의된 다중 매개변수 고유값 문제를 다중 지수를 이용하여 해결하는 새로운 접근법을 제시한다. 이 방법은 세미스무스 뉴턴 방법으로 해석될 수 있으며, 따라서 국소적 이차 수렴을 보장할 수 있다. 또한 특정 극단적인 고유값의 경우 전역적 선형 수렴도 가능하다.