기계 학습 포텐셜(MLP)은 고전적 시뮬레이션과 유사한 효율성으로 분자 시스템의 포텐셜 및 자유 에너지 표면(FES)을 ab initio 수준의 정확도로 설명할 수 있는 가능성을 보여준다. 그러나 FES 예측을 위해서는 단순히 에너지와 힘의 정확성뿐만 아니라 구성 상태의 다양성(엔트로피)에 대한 정확한 추정이 필요하다.
기계 학습 포텐셜(MLP)은 고전적 시뮬레이션과 유사한 효율성으로 분자 시스템의 포텐셜 및 자유 에너지 표면(FES)을 ab initio 수준의 정확도로 설명할 수 있는 가능성을 보여준다. 그러나 FES 예측을 위해서는 구성 엔트로피에 대한 정확한 추정이 필요하며, 이는 훈련 데이터의 집합 변수(CV) 분포에 따라 달라질 수 있다.
기계 학습 포텐셜(MLP)은 고전적인 시뮬레이션과 유사한 효율성으로 분자 시스템의 포텐셜 및 자유 에너지 표면(FES)을 ab initio 수준의 정확도로 설명할 수 있는 가능성을 보여준다. 그러나 MLP가 자유 에너지와 전이 상태를 신뢰성 있게 재현할 수 있는지에 대한 의문이 제기된다. 이 연구에서는 훈련 데이터의 집단 변수(CV) 분포가 MLP의 FES 예측 정확도에 미치는 영향을 조사한다.
기계 학습 포텐셜(MLP)은 고전적인 시뮬레이션과 유사한 효율성으로 분자 시스템의 포텐셜 및 자유 에너지 표면(FES)을 ab initio 수준의 정확도로 설명할 수 있는 가능성을 보여준다. 그러나 MLP가 자유 에너지와 전이 상태를 신뢰성 있게 재현할 수 있는지에 대한 의문이 제기된다. 이 연구에서는 훈련 데이터의 집합 변수(CV) 분포가 MLP의 FES 예측 정확도에 미치는 영향을 조사한다.