toplogo
Sign In

MambaIR: Image Restoration with State-Space Model


Core Concepts
State-space model MambaIR improves image restoration with local enhancement and channel attention.
Abstract
The article introduces MambaIR, a state-space model for image restoration that addresses the dilemma between global receptive fields and efficient computation. By enhancing the vanilla Mamba with local pixel similarity and channel attention, MambaIR outperforms SwinIR in image super-resolution tasks. The methodology includes Residual State-Space Blocks (RSSBs) and Vision State-Space Modules to capture long-range dependencies efficiently. Introduction: Image restoration challenges in computer vision. Deep learning models like CNNs and Transformers improve performance. Structured State Space Models: S4 models balance global receptive field and computational efficiency. Mamba adapts S4 for deep networks in various tasks. Methodology: RSSBs enhance standard Mamba for image restoration. VSSMs capture long-range dependencies effectively. Loss functions include L1 loss for SR and Charbonnier loss for denoising. Experiences: Extensive experiments show superior performance of MambaIR over baselines. Ablation studies highlight the importance of design choices like RSSB components. Comparison on Image Super-resolution: Quantitative results show MambaIR outperforming state-of-the-art methods in classic SR tasks. Model complexity comparisons demonstrate efficiency similar to SwinIR but with a global receptive field. Comparison on Image Denoising: Results indicate better performance of MambaIR in Gaussian color image denoising compared to other methods. Visual comparisons show clearer edges and natural shapes in denoised images. Real-world Image Super-resolution: Qualitative comparison demonstrates the robustness of MambaIR in real-world image super-resolution tasks. Further questions: How does the linear complexity of MambaIR impact its scalability? What are the implications of balancing global receptive fields and computational efficiency? How can the principles of structured state-space models be applied to other computer vision tasks?
Stats
MambaはSwinIRを上回る0.45dBの性能を示す。
Quotes
"Extensive experiments demonstrate the superiority of our method." "Mamba-based restoration networks naturally activate more pixels." "Mamba shares the same recursive form as S4 model."

Key Insights Distilled From

by Hang Guo,Jin... at arxiv.org 03-26-2024

https://arxiv.org/pdf/2402.15648.pdf
MambaIR

Deeper Inquiries

どのようにしてMambaIRは画像復元のための新しい代替手段となり得るか?

MambaIRは、画像復元における新しい代替手段となり得る要因が複数あります。まず、MambaIRは局所ピクセル類似性を活用し、チャネル冗長性を減らすことで、画像復元タスクに特化した設計を導入しています。これにより、通常のMambaでは発生するローカルピクセル忘却やチャンネル冗長性といった課題を解決することが可能です。さらに、Residual State-Space Block(RSSB)やVision State-Space Moduleなどの構成要素を組み合わせることで、効率的かつ効果的な画像復元アプローチを提供します。 また、MambaIRは線形計算量で長距離依存関係をモデリングする能力も持っております。この特性は大域受容野を確保しながらも効率的な計算処理が可能であるため、実用的な観点からも有益です。さらに、「Selective Structured State Space Model」や「Improved Mamba」といった最近の進歩からインスパイアされており、「State Space Models」が低レベルビジョンタスク向けに適応されています。 以上のように、MambaIRは画像復元タスク向けに設計された構造化された状態空間モデルであり、その多くの利点から新しい代替手段として注目されています。
0
visual_icon
generate_icon
translate_icon
scholar_search_icon
star