toplogo
Sign In

FineMath: A Comprehensive Evaluation Benchmark for Chinese Large Language Models


Core Concepts
FineMath is a detailed benchmark dataset designed to assess the mathematical reasoning capabilities of Chinese Large Language Models, highlighting the need for comprehensive evaluations in this domain.
Abstract

FineMath introduces a fine-grained evaluation dataset covering various mathematical concepts and problems, emphasizing the importance of assessing LLMs' reasoning abilities. The dataset categorizes math word problems into 17 types with different difficulty levels, providing insights into the model's performance. Extensive experiments reveal areas for improvement in Chinese LLMs' mathematical reasoning capabilities. The analysis also sheds light on factors influencing model results and evaluation methods often overlooked. FineMath aims to enhance understanding and evaluation of LLMs' mathematical abilities through meticulous assessment.

edit_icon

Customize Summary

edit_icon

Rewrite with AI

edit_icon

Generate Citations

translate_icon

Translate Source

visual_icon

Generate MindMap

visit_icon

Visit Source

Stats
FineMath covers 17 categories of math word problems. GPT-4 achieves an accuracy rate of 73% on FineMath. MathGLM-10B performs significantly better on contaminated datasets. Moss-SFT-16B and Baichuan-7B show poor performance across all MWP categories.
Quotes
"FineMath organizes MWPs according to key mathematical concepts taught in elementary school." "We propose a fine-grained elementary school MWPs benchmark for Chinese LLMs."

Key Insights Distilled From

by Yan Liu,Renr... at arxiv.org 03-13-2024

https://arxiv.org/pdf/2403.07747.pdf
FineMath

Deeper Inquiries

How can contamination from training data impact the evaluation results of large language models like MathGLM-10B?

Contamination from training data can significantly impact the evaluation results of large language models like MathGLM-10B. When test examples in a benchmark dataset overlap with the training data used for these models, it can lead to an overestimation of their performance. In the case of MathGLM-10B, if there is contamination where some test examples are inadvertently included in the training set, the model may appear to perform better than it actually does on unseen data. This overestimation can mislead researchers into believing that the model has higher generalization capabilities than it truly possesses. The implications of such contamination include skewed accuracy metrics, misleading conclusions about model performance and generalization abilities, and potentially flawed assessments of a model's problem-solving skills. To ensure fair evaluations and accurate insights into a model's capabilities, it is crucial to identify and mitigate any contamination issues that may affect the evaluation results.

How do different prompts impact the accuracy and performance of LLMs in solving math word problems?

Different prompts play a significant role in influencing the accuracy and performance of Large Language Models (LLMs) when solving math word problems. Prompts serve as instructions or cues given to LLMs before they generate responses to specific tasks or questions. The choice of prompt can shape how an LLM approaches problem-solving tasks and affects its ability to provide correct answers. Prompt Content: The content within a prompt can guide an LLM towards certain types of reasoning or solutions. For example: A prompt that explicitly asks for an answer without explanation might encourage direct response generation. Providing additional context or constraints in a prompt could influence how thoroughly an LLM reasons through a problem. Prompt Structure: The structure of a prompt, such as whether it includes multiple-choice options or requires open-ended responses, impacts how an LLM processes information: Multiple-choice prompts may simplify decision-making by providing predefined answer choices. Open-ended prompts allow more flexibility but require deeper reasoning for generating accurate responses. Effect on Performance: Different prompts can lead to varying levels of accuracy among LLMs: Some prompts may align well with certain models' strengths while challenging others. Misleading or ambiguous prompts could result in incorrect answers even if an LLM understands underlying concepts accurately. In essence, choosing appropriate prompts tailored to specific evaluation goals is essential for obtaining reliable insights into an LLM's mathematical reasoning abilities during problem-solving tasks.

How does response length generated by models reflect their confidence and reasoning abilities in solving complex math word problems?

The response length generated by models reflects their confidence level and reasoning abilities when solving complex math word problems: Confidence Level: Longer responses often indicate that a model is confident about its solution since it provides detailed explanations or calculations. Shorter responses might suggest lower confidence levels where only essential information is provided without elaboration. Reasoning Abilities: Detailed explanations within longer responses showcase strong reasoning skills as they demonstrate thorough understanding and logical progression. Models capable of concise yet precise answers exhibit efficient reasoning abilities by focusing on key points without unnecessary elaboration. Complexity Considerations: In complex math word problems requiring multi-step solutions, longer responses are expected due to intricate calculations or explanations involved. Models producing shorter but accurate responses demonstrate efficient problem-solving strategies suitable for simpler scenarios. 4 .Model Comparison: Response lengths across different models offer insights into their approach towards problem-solving: - Models generating succinct yet comprehensive answers excel at balancing conciseness with depth - Lengthy but convoluted replies might indicate overcomplication rather than enhanced comprehension By analyzing response lengths alongside correctness rates during evaluations , we gain valuable perspectives on both model’s competence and efficiency in tackling diverse mathematical challenges within word-problem contexts
0
star