toplogo
Sign In

Tangent Bundle Convolutional Learning: Manifold Signals to Cellular Sheaves


Core Concepts
Introducing convolution over tangent bundles of Riemann manifolds, leading to novel architectures for processing vector fields on manifolds.
Abstract

The content introduces a novel convolution operation over the tangent bundle of Riemann manifolds using the Connection Laplacian operator. It defines tangent bundle filters and neural networks based on this operation, providing a spectral representation that generalizes existing filters. A discretization procedure is introduced to make these continuous architectures implementable, converging to sheaf neural networks. The effectiveness of the proposed architecture is numerically evaluated on various learning tasks. The paper discusses the development of deep learning techniques and their applications in various fields, emphasizing the importance of processing data defined on irregular domains like manifolds. It also explores related works in manifold learning and introduces cellular sheaves as a mathematical structure for approximating connection Laplacians over manifolds.

Introduction:

  • Introducing convolution over tangent bundles of Riemann manifolds.
  • Defining tangent bundle filters and neural networks based on this operation.
  • Spectral representation generalizes existing filters.
  • Discretization procedure makes continuous architectures implementable.

Related Works:

  • Discusses previous works in manifold learning and graph signal processing.
  • Introduces cellular sheaves as a mathematical structure for approximating connection Laplacians over manifolds.

Contributions:

  • Defines convolution operation over tangent bundles using Connection Laplacian.
  • Introduces novel architectures for processing vector fields on manifolds.
  • Evaluates proposed architecture's effectiveness on various learning tasks.
edit_icon

Customize Summary

edit_icon

Rewrite with AI

edit_icon

Generate Citations

translate_icon

Translate Source

visual_icon

Generate MindMap

visit_icon

Visit Source

Stats
Preliminary results presented in [1]. This work was funded by NSF CCF 1934960.
Quotes

Key Insights Distilled From

by Claudio Batt... at arxiv.org 03-19-2024

https://arxiv.org/pdf/2303.11323.pdf
Tangent Bundle Convolutional Learning

Deeper Inquiries

How can lowpass filter constraints be enforced during training

低域通過フィルタの制約をトレーニング中に強制する方法はいくつかあります。まず、損失関数にペナルティ項を追加して、高周波成分が抑制されるようにします。例えば、L2正則化項や周波数応答の勾配を最小化する項などが考えられます。また、フィルター係数に対して明示的な制約条件を設定し、学習中にそれらの範囲内で収束するように調整することも効果的です。

What are the implications of not satisfying the lowpass filter condition

低域フィルタ条件を満たさない場合の影響は重大です。この条件はTheorem 1で収束性を保証するための最小限の条件であり、これが満たされていないと結果が予測可能ではなくなります。具体的には、ハイパフォーマンスや一貫性が損なわれる可能性があります。また、不安定性や意図しない振る舞いも引き起こす可能性があるため注意が必要です。

How does the proposed methodology connect Sheaf Neural Networks to tangent bundles

提案された手法はSheaf Neural Networks(SNN)と接続バンドル間の関連付けを行います。具体的には、「微分保存非線形」と呼ばれる特殊な非線形活性化関数を使用し、セルラーシーブ上でTangent Bundle Neural Networks(TNN)アーキテクチャ全体を実装します。この手法では空間および時間領域で離散化プロセスも導入されており、SNNからTangent Bundlesへシームレスかつ理論的に接続されています。これによりグラフ信号処理や時系列データ処理と同様の原則と技術手法が適用されました。
0
star