Die Studie analysiert die Iterationskomplexität des risikoempfindlichen REINFORCE-Algorithmus, der die exponentielle Nutzenfunktion verwendet, um Risiko in den Entscheidungsprozess einzubeziehen. Die Analyse zeigt, dass der risikoempfindliche REINFORCE-Algorithmus eine Iterationskomplexität von O(ϵ^-2) aufweist, um einen ϵ-approximativen Fixpunkt erster Ordnung zu erreichen.
Der Vergleich mit dem risikoneutralen REINFORCE-Algorithmus ergibt, dass der risikoempfindliche Algorithmus unter bestimmten Bedingungen bezüglich des Risikoparameters β eine reduzierte Anzahl von Iterationen für die Konvergenz benötigt. Dies liegt daran, dass der Risikoparameter die Lipschitz-Stetigkeit des risikoempfindlichen Zielfunktionals beeinflusst, was sich direkt auf die Iterationskomplexität auswirkt.
Die Simulationsergebnisse in der Minigrid-Navigationsumgebung bestätigen die theoretischen Erkenntnisse. Die risikoaversen Fälle stabilisieren sich nach etwa der Hälfte der Episoden im Vergleich zum risikoneutralen Fall, was auf eine schnellere Konvergenz des risikoempfindlichen Algorithmus hinweist.
他の言語に翻訳
原文コンテンツから
arxiv.org
深掘り質問