スパース幾何グラフにおけるメッセージパッシングニューラルネットワーク(MPNN)の表現能力は、基礎となるグラフの連結性と剛性に依存する。
Geometric Graph Neural Networks' expressive power and discrimination capabilities are crucial for understanding their design choices and practical implications.
Geometric Graph Neural Networks aim to model scientific problems with geometric features, utilizing invariant/equivariant properties to enhance the understanding of geometric graphs.
物理的対称性を尊重した3D原子系の幾何学GNNの包括的な概要
The author explores the expressive power of geometric GNNs through the Geometric Weisfeiler-Leman (GWL) framework, highlighting key design choices that influence their expressivity.
Geometric graph neural networks are essential for modeling scientific problems with geometric features, addressing the limitations of traditional GNNs.