본 연구는 HL-LHC에서 생성된 W' 보손이 렙톤과 무거운 중성미자로 붕괴하는 과정에서, 제트 하부구조 분석 기술을 활용하여 무거운 중성미자의 좌/우 손잡이 결합 특성을 구별하는 방법을 제시합니다.
本稿では、大型ハドロン衝突型加速器(LHC)の今後の高輝度運転(HL-LHC)において、重いW'ボソンがレプトンと重いニュートリノに崩壊する過程を観測することで、標準模型を超える新しい物理を探求する可能性について議論する。特に、重いニュートリノの左右のカイラリティを区別するために、レプトンと、重いニュートリノの崩壊に由来するレプトンを含むファットジェットを含む事象におけるジェット副構造解析の手法を検討する。
這項研究沒有發現 Z 和希格斯玻色子罕見衰變為 J/ψ 或 ψ(2S) 介子和光子的證據,並對其分支比設定了新的上限。
This study investigates the potential of jet substructure analysis to differentiate between left- and right-handed couplings of a hypothetical heavy neutrino (N) produced from the decay of a W' boson at the High Luminosity Large Hadron Collider (HL-LHC).
The Inert Doublet Model (IDM) can be effectively probed at a high-energy muon collider (µC) via vector-boson fusion (VBF) processes, particularly the production of a pair of heavy scalars (A) that decay into dark matter candidates (H). This study highlights the potential of a 10 TeV µC for exploring IDM parameter space and making discoveries beyond the Standard Model.
This paper presents a phenomenological model to study the production of the f1(1285) resonance in the γ∗γ → ηπ+π− reaction, focusing on the interference between the dominant decay channels and its impact on invariant mass distributions and angular distributions.
This research paper presents a search for new physics beyond the Standard Model using events with a high-energy jet and missing transverse momentum in proton-proton collisions at the Large Hadron Collider (LHC), finding no significant deviations from Standard Model predictions but setting new constraints on various theoretical models.
This paper proposes a novel method to probe light-quark dipole interactions, which are related to CP violation and new physics beyond the Standard Model, by measuring the azimuthal asymmetry of a dihadron pair produced in association with another hadron at electron-positron colliders.
本稿では、|Vcb| の精密決定に重要な、b→Xclν̅l 崩壊におけるレプトン不変質量スペクトルに対する摂動論的なO(αs^2) 補正を、三重チャームチャンネルの寄与を含めて完全に計算した結果を報告する。
The proposed µTRISTAN collider presents a unique opportunity to probe lepton flavor violating (LFV) interactions of axion-like particles (ALPs) in a high-energy environment, potentially complementing low-energy LFV experiments and exploring unconstrained parameter space for ALP masses in the 1-100 GeV range.