Integrating physics-informed loss functions into neural networks enhances their ability to approximate numerical model errors and perform superresolution of finite element solutions, surpassing purely data-driven approaches.
복잡한 경계 조건을 가진 Navier-Stokes 방정식을 효과적으로 풀기 위해 Soft 및 Hard 제약 조건을 결합한 새로운 Physics-Informed Neural Network 방법론을 제시한다.
This research paper introduces a novel Physics-Informed Neural Network (PINN) approach for solving Allen-Cahn equations, enhancing accuracy by incorporating energy dissipation as a constraint within the learning process.
뉴럴 컨쥬게이트 플로우(NCF)는 위상 켤레를 통해 정확한 플로우 구조를 갖추도록 설계되어, 일반 미분 방정식(ODE)의 잠재적 dynamcis를 효율적으로 추정하고 외삽할 수 있는 새로운 물리 정보 기반 신경망 아키텍처입니다.
Neural Conjugate Flows (NCFs) offer a novel architecture for physics-informed neural networks, outperforming traditional PINNs and Neural ODEs in extrapolating dynamical systems by leveraging topological flow conjugation for enhanced causality and efficiency.
KH-PINN, a novel physics-informed neural network framework, accurately reconstructs complex Kelvin-Helmholtz instability flows and infers unknown parameters from sparse, noisy data by incorporating multiscale embedding and small-velocity amplification strategies.
Integrating physics-inspired empirical models into neural networks (Reg-PINNs) enhances the accuracy and generalizability of magnetopause location prediction, outperforming traditional empirical models and standard neural networks.
SPIKANs,一種新型可分離物理信息化神經網路架構,有效解決了傳統 PINNs 在處理高維偏微分方程時遇到的計算瓶頸,顯著提升了訓練速度和效率。
SPIKAN은 고차원 편미분 방정식을 효율적으로 풀기 위해 변수 분리 원리를 PIKAN에 적용한 새로운 신경망 아키텍처로, 정확도를 유지하면서도 훈련의 계산 복잡성을 크게 줄여줍니다.
SPIKANs, a novel architecture for physics-informed machine learning, leverages the principle of separation of variables to enhance the efficiency of Kolmogorov-Arnold Networks (KANs) in solving high-dimensional partial differential equations (PDEs).