toplogo
Đăng nhập
thông tin chi tiết - Computational Science - # Efficient Nested Integration Estimation

Double-Loop Quasi-Monte Carlo Estimator for Nested Integration


Khái niệm cốt lõi
Introducing a novel DLQMC estimator for nested integration problems to improve efficiency and reduce computational costs.
Tóm tắt

1. Introduction

  • Evaluating Expected Information Gain (EIG) is crucial in computational science and statistics.
  • Techniques based on Quasi-Monte Carlo (QMC) methods have focused on enhancing inner integral approximation efficiency.
  • A novel approach, DLQMC estimator, extends efforts to address inner and outer expectations simultaneously.

2. Brief Overview of Monte Carlo and Randomized Quasi-Monte Carlo Integration

  • MC method approximates integrals using random points.
  • QMC method achieves better convergence rates for certain integrands.
  • RQMC method improves efficiency while maintaining a low-discrepancy structure.

3. Nested Integration

  • DLQMC estimator defined for nested integrals.
  • DLMC estimator for nested integrals has limitations due to bias and variance.
  • DLQMC estimator aims to reduce required samples and improve efficiency.

4. Numerical Results

  • DLQMC estimator's bias and variance analyzed.
  • Optimal work for DLQMC estimator derived for specified error tolerance.
edit_icon

Tùy Chỉnh Tóm Tắt

edit_icon

Viết Lại Với AI

edit_icon

Tạo Trích Dẫn

translate_icon

Dịch Nguồn

visual_icon

Tạo sơ đồ tư duy

visit_icon

Xem Nguồn

Thống kê
"The total work of the optimized DLQMC estimator for a specified error tolerance TOL > 0 is given by W ∗ DLQ ∝ TOL−(2/(1+β) + 1/(1+δ + γη))"
Trích dẫn
"The DLQMC estimator for nested integration problems to improve efficiency and reduce computational costs." "DLQMC estimator aims to reduce required samples and improve efficiency."

Thông tin chi tiết chính được chắt lọc từ

by Arve... lúc arxiv.org 02-29-2024

https://arxiv.org/pdf/2302.14119.pdf
Double-loop quasi-Monte Carlo estimator for nested integration

Yêu cầu sâu hơn

질문 1

DLQMC 추정자를 다른 계산 문제에 어떻게 적용할 수 있습니까? 답변 1 여기에

질문 2

실제 응용 프로그램에서 DLQMC 추정자의 잠재적인 제한 사항은 무엇입니까? 답변 2 여기에

질문 3

DLQMC의 원칙을 확장하여 다른 계산 알고리즘을 최적화하는 방법은 무엇입니까? 답변 3 여기에
0
star