toplogo
سجل دخولك
رؤى - Computational Science - # Efficient Nested Integration Estimation

Double-Loop Quasi-Monte Carlo Estimator for Nested Integration


المفاهيم الأساسية
Introducing a novel DLQMC estimator for nested integration problems to improve efficiency and reduce computational costs.
الملخص

1. Introduction

  • Evaluating Expected Information Gain (EIG) is crucial in computational science and statistics.
  • Techniques based on Quasi-Monte Carlo (QMC) methods have focused on enhancing inner integral approximation efficiency.
  • A novel approach, DLQMC estimator, extends efforts to address inner and outer expectations simultaneously.

2. Brief Overview of Monte Carlo and Randomized Quasi-Monte Carlo Integration

  • MC method approximates integrals using random points.
  • QMC method achieves better convergence rates for certain integrands.
  • RQMC method improves efficiency while maintaining a low-discrepancy structure.

3. Nested Integration

  • DLQMC estimator defined for nested integrals.
  • DLMC estimator for nested integrals has limitations due to bias and variance.
  • DLQMC estimator aims to reduce required samples and improve efficiency.

4. Numerical Results

  • DLQMC estimator's bias and variance analyzed.
  • Optimal work for DLQMC estimator derived for specified error tolerance.
edit_icon

تخصيص الملخص

edit_icon

إعادة الكتابة بالذكاء الاصطناعي

edit_icon

إنشاء الاستشهادات

translate_icon

ترجمة المصدر

visual_icon

إنشاء خريطة ذهنية

visit_icon

زيارة المصدر

الإحصائيات
"The total work of the optimized DLQMC estimator for a specified error tolerance TOL > 0 is given by W ∗ DLQ ∝ TOL−(2/(1+β) + 1/(1+δ + γη))"
اقتباسات
"The DLQMC estimator for nested integration problems to improve efficiency and reduce computational costs." "DLQMC estimator aims to reduce required samples and improve efficiency."

الرؤى الأساسية المستخلصة من

by Arve... في arxiv.org 02-29-2024

https://arxiv.org/pdf/2302.14119.pdf
Double-loop quasi-Monte Carlo estimator for nested integration

استفسارات أعمق

질문 1

DLQMC 추정자를 다른 계산 문제에 어떻게 적용할 수 있습니까? 답변 1 여기에

질문 2

실제 응용 프로그램에서 DLQMC 추정자의 잠재적인 제한 사항은 무엇입니까? 답변 2 여기에

질문 3

DLQMC의 원칙을 확장하여 다른 계산 알고리즘을 최적화하는 방법은 무엇입니까? 답변 3 여기에
0
star