本研究では、ストカスティック熱方程式の有限体積スキームの収束率を導出する。時間離散化にはセミ陰的オイラー法を、空間離散化には二点流束近似法を用いた。初期値と拡散項の正則性の下で、変分解と有限体積スキームの解の L2ノルムの誤差が O(τ1/2 + h + hτ−1/2)の収束率を持つことを示した。