本研究では、トリミングされた多パッチ等方幾何学シェルの実時間効率的な解決のためのモデル次元削減フレームワークを提示する。パラメータに依存する幾何学的特徴を活用し、ローカル縮約基底法とディスクリート経験的補間法を組み合わせることで、アフィン近似を構築し、効率的な縮約モデルを実現する。