본 논문은 정보 공개 게임에서 정보 공개와 정보 설계 사이에 존재하는 등가성을 밝혀내고, 다양한 경제 상황에서 정보 공개 게임의 광범위한 균형 결과를 설명합니다.
볼록 비용을 가진 Tullock 경쟁에서 연속 시간 최적 반응 역학은 에이전트가 이기적이고 근시안적으로 행동하더라도 유일한 평형에 수렴한다는 것을 보여준다.
토너먼트에서 선수들의 실제 점수를 완벽하게 예측하는 새로운 등급 시스템인 성능 등급 평형(PRE)을 소개합니다.
잠재 게임에서 로그-선형 학습은 ϵ-효율적인 Nash 균형에 유한 시간 내 수렴한다.
이 논문은 개별적으로 합리적인 지불 벡터 집합이 유계인 조건을 만족하는 특성 함수 형태 게임(반드시 이전 가능 효용이 아님)의 핵심을 공리화하는 세 가지 새로운 결과를 제공한다.
불완전한 정보와 비대칭적 인지를 가진 이동 목표 방어 문제에서 전략적 및 인지적 안정성을 보장하는 균형 상태를 달성하기 위한 조건을 제시하고, 균형의 강건성을 분석한다.
불완전한 정보 상황에서 협상 당사자들이 간접적으로 협상하며 상대방의 모델을 학습하여 협상 성공률을 높이고 개인 이익을 극대화할 수 있다.
미정보 게임에서 플레이어들은 실제 게임과 다른 주관적 게임 정보를 가지고 있으며, 이에 따라 전략적 선택을 하게 된다. 적응 절차는 이러한 플레이어들이 새로운 정보를 얻으면서 점진적으로 자신의 게임 정보를 수정해 나가는 과정을 모델링한다.
다중 에이전트 시스템에서 개인적 이득과 집단 보상 간의 균형을 달성하기 위한 전략을 탐구하고, 평균장 게임 이론을 활용하여 무한대 규모의 에이전트 집단에서의 균형 해법과 보상 구조를 제시한다.
본 논문에서는 강한 단조성을 가지는 게임에 대한 예측 제어 기반 피드백 제어기의 안정성 증명 기법을 제시한다. 이를 통해 다중 에이전트 시스템의 경쟁적 자원 할당 문제에 대한 안정적인 해법을 제공한다.