Double-Loop Quasi-Monte Carlo Estimator for Nested Integration
Concepts de base
Introducing a novel DLQMC estimator for nested integration problems to improve efficiency and reduce computational costs.
Résumé
1. Introduction
- Evaluating Expected Information Gain (EIG) is crucial in computational science and statistics.
- Techniques based on Quasi-Monte Carlo (QMC) methods have focused on enhancing inner integral approximation efficiency.
- A novel approach, DLQMC estimator, extends efforts to address inner and outer expectations simultaneously.
2. Brief Overview of Monte Carlo and Randomized Quasi-Monte Carlo Integration
- MC method approximates integrals using random points.
- QMC method achieves better convergence rates for certain integrands.
- RQMC method improves efficiency while maintaining a low-discrepancy structure.
3. Nested Integration
- DLQMC estimator defined for nested integrals.
- DLMC estimator for nested integrals has limitations due to bias and variance.
- DLQMC estimator aims to reduce required samples and improve efficiency.
4. Numerical Results
- DLQMC estimator's bias and variance analyzed.
- Optimal work for DLQMC estimator derived for specified error tolerance.
Traduire la source
Vers une autre langue
Générer une carte mentale
à partir du contenu source
Double-loop quasi-Monte Carlo estimator for nested integration
Stats
"The total work of the optimized DLQMC estimator for a specified error tolerance TOL > 0 is given by W ∗ DLQ ∝ TOL−(2/(1+β) + 1/(1+δ + γη))"
Citations
"The DLQMC estimator for nested integration problems to improve efficiency and reduce computational costs."
"DLQMC estimator aims to reduce required samples and improve efficiency."
Questions plus approfondies
질문 1
DLQMC 추정자를 다른 계산 문제에 어떻게 적용할 수 있습니까?
답변 1 여기에
질문 2
실제 응용 프로그램에서 DLQMC 추정자의 잠재적인 제한 사항은 무엇입니까?
답변 2 여기에
질문 3
DLQMC의 원칙을 확장하여 다른 계산 알고리즘을 최적화하는 방법은 무엇입니까?
답변 3 여기에